The Fourier--Jacobi functions of $n$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 32-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Jacobi forms on the space $H_1\times\mathbb{C}^n$ and Hecke operators, acting on such forms, are defined and investigated.
@article{ZNSL_1988_168_a3,
     author = {V. A. Gritsenko},
     title = {The {Fourier--Jacobi} functions of $n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {168},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a3/}
}
TY  - JOUR
AU  - V. A. Gritsenko
TI  - The Fourier--Jacobi functions of $n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 32
EP  - 44
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a3/
LA  - ru
ID  - ZNSL_1988_168_a3
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%T The Fourier--Jacobi functions of $n$
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 32-44
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a3/
%G ru
%F ZNSL_1988_168_a3
V. A. Gritsenko. The Fourier--Jacobi functions of $n$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 32-44. http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a3/