On sets of values of initial coefficients in the class of meromorphic functions with the bounded boundary rotation
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 23-31
Cet article a éte moissonné depuis la source Math-Net.Ru
A description of the range of system $(a_1,a_2,\dots,a_n)$ is given in class $\Lambda_k$ $(k\geq2)$ of functions $f(z)=z^{-1}+\sum^\infty_{n=0}a_nz^n$, regular in $0<|z|<1$, $f^\prime(z)\ne0$, mapping $|z|<1$ onto a domain with boundary rotation $\alpha\leq k\pi$. For this one makes use of the representation of functions of class $\Lambda_k$ in terms of functions of the Caratheodory class.
@article{ZNSL_1988_168_a2,
author = {E. G. Goluzina},
title = {On sets of values of initial coefficients in the class of meromorphic functions with the bounded boundary rotation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {23--31},
year = {1988},
volume = {168},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a2/}
}
TY - JOUR AU - E. G. Goluzina TI - On sets of values of initial coefficients in the class of meromorphic functions with the bounded boundary rotation JO - Zapiski Nauchnykh Seminarov POMI PY - 1988 SP - 23 EP - 31 VL - 168 UR - http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a2/ LA - ru ID - ZNSL_1988_168_a2 ER -
E. G. Goluzina. On sets of values of initial coefficients in the class of meromorphic functions with the bounded boundary rotation. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 23-31. http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a2/