On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields. II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 11-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the relation $h(d)=2$ is valid for at least $Cx^{1/2}\log^{-2}x$ values of $d\leq x$. Here $h(d)$ is the number of the classes of binary quadratic forms of determinant $d$, while $C>0$ is a constant. Further, it is shown that for almost all primes $p\equiv3\,(\operatorname{mod}4)$, $p\leq x$, for $\varepsilon(p)$, a fundamental unit of field $\mathbb{Q}(\sqrt{p})$ and $\ell(p)$, the length of the period of the continued fraction expansion of $\sqrt{p}$, we have estimates $\varepsilon(p)\gg p^2\log^{-c}p$, $\ell(p)\gg\log p$, which improve a result of Hooley (J. Reine Angew. Math., Vol. 353, pp. 98–131, 1984; MR 86d:11032). In addition, a generalization is given to composite discriminants of the Hirzebruch–Zagier formula, relating $h(-p)$, $p\equiv3\,(\operatorname{mod}4)$, with the continued fraction expansion of $\sqrt{p}$ (Asterisque, no. 24–25, pp. 81–97, 1975; MR 51 10293).
@article{ZNSL_1988_168_a1,
     author = {E. P. Golubeva},
     title = {On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic {fields.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--22},
     year = {1988},
     volume = {168},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 11
EP  - 22
VL  - 168
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/
LA  - ru
ID  - ZNSL_1988_168_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 11-22
%V 168
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/
%G ru
%F ZNSL_1988_168_a1
E. P. Golubeva. On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 11-22. http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/