On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields.~II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 11-22

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the relation $h(d)=2$ is valid for at least $Cx^{1/2}\log^{-2}x$ values of $d\leq x$. Here $h(d)$ is the number of the classes of binary quadratic forms of determinant $d$, while $C>0$ is a constant. Further, it is shown that for almost all primes $p\equiv3\,(\operatorname{mod}4)$, $p\leq x$, for $\varepsilon(p)$, a fundamental unit of field $\mathbb{Q}(\sqrt{p})$ and $\ell(p)$, the length of the period of the continued fraction expansion of $\sqrt{p}$, we have estimates $\varepsilon(p)\gg p^2\log^{-c}p$, $\ell(p)\gg\log p$, which improve a result of Hooley (J. Reine Angew. Math., Vol. 353, pp. 98–131, 1984; MR 86d:11032). In addition, a generalization is given to composite discriminants of the Hirzebruch–Zagier formula, relating $h(-p)$, $p\equiv3\,(\operatorname{mod}4)$, with the continued fraction expansion of $\sqrt{p}$ (Asterisque, no. 24–25, pp. 81–97, 1975; MR 51 10293).
@article{ZNSL_1988_168_a1,
     author = {E. P. Golubeva},
     title = {On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic {fields.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {168},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 11
EP  - 22
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/
LA  - ru
ID  - ZNSL_1988_168_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 11-22
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/
%G ru
%F ZNSL_1988_168_a1
E. P. Golubeva. On the period length of the continued fraction expansion of quadratic irrationalities and class numbers of real quadratic fields.~II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 9, Tome 168 (1988), pp. 11-22. http://geodesic.mathdoc.fr/item/ZNSL_1988_168_a1/