Topological classification of branched coverings of the two-dimensional sphere
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 135-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The following questions are considered: 1) which coverings of the two-sphere besides the simple ones are determined by the obvious invariants, the number of branch points, and their types, 2) in which cases can one add to the collection of obvious invariants simple combinatorial invariants such that the collection obtained determines the covering of the sphere up to homeomorphism. It is shown that in some cases the Arf-invariant and signature introduced by the author are such additional invariants. To prove the results one develops a reduction of the problem of classification of branched coverings of the sphere to a combinatorial problem due to Hurwitz.
@article{ZNSL_1988_167_a9,
     author = {A. N. Protopopov},
     title = {Topological classification of branched coverings of the two-dimensional sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--156},
     publisher = {mathdoc},
     volume = {167},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a9/}
}
TY  - JOUR
AU  - A. N. Protopopov
TI  - Topological classification of branched coverings of the two-dimensional sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 135
EP  - 156
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a9/
LA  - ru
ID  - ZNSL_1988_167_a9
ER  - 
%0 Journal Article
%A A. N. Protopopov
%T Topological classification of branched coverings of the two-dimensional sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 135-156
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a9/
%G ru
%F ZNSL_1988_167_a9
A. N. Protopopov. Topological classification of branched coverings of the two-dimensional sphere. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 135-156. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a9/