Configurations of six skew lines
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 121-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we give a classification of nonsingular configurations of 6 lines of the space $\mathbb{R}P^3$ with respect to right isotopy (in the course of a rigid isotopy the lines remain pairwise disjoint lines) and prove that up to rigid isotopies nonsingular configurations of $\geq6$ lines are not determined by the linking coefficients.
@article{ZNSL_1988_167_a8,
author = {V. F. Mazurovskii},
title = {Configurations of six skew lines},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--134},
publisher = {mathdoc},
volume = {167},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a8/}
}
V. F. Mazurovskii. Configurations of six skew lines. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a8/