The stretching coefficients of pseudo-Anosov homeomorphisms
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 111-116

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the proof of the following theorem: Let $1$. The number of conjugacy classes of pseudo-Anosov elements $f$ of the group $\operatorname{Mod}_S$ with stretching factor $\lambda(f)\leq c$ is finite.
@article{ZNSL_1988_167_a6,
     author = {N. V. Ivanov},
     title = {The stretching coefficients of {pseudo-Anosov} homeomorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--116},
     publisher = {mathdoc},
     volume = {167},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a6/}
}
TY  - JOUR
AU  - N. V. Ivanov
TI  - The stretching coefficients of pseudo-Anosov homeomorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 111
EP  - 116
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a6/
LA  - ru
ID  - ZNSL_1988_167_a6
ER  - 
%0 Journal Article
%A N. V. Ivanov
%T The stretching coefficients of pseudo-Anosov homeomorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 111-116
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a6/
%G ru
%F ZNSL_1988_167_a6
N. V. Ivanov. The stretching coefficients of pseudo-Anosov homeomorphisms. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 111-116. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a6/