Topological type and moduli of Riemannian and Klein supersurfaces
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 179-185
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper describes topological invariants which determine connected components of the moduli superspaces of Kleinian and Riemannian supersurfaces (not necessarily compact). The connected components corresponding to the same topological type of underlying surfaces are shown to be uniformized by the same Kricke space (respectively Teichmuller space).
@article{ZNSL_1988_167_a14,
author = {S. M. Natanzon},
title = {Topological type and moduli of {Riemannian} and {Klein} supersurfaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--185},
year = {1988},
volume = {167},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a14/}
}
S. M. Natanzon. Topological type and moduli of Riemannian and Klein supersurfaces. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 179-185. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a14/