Topological type and moduli of Riemannian and Klein supersurfaces
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 179-185
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper describes topological invariants which determine
connected components of the moduli superspaces of Kleinian and
Riemannian supersurfaces (not necessarily compact). The connected
components corresponding to the same topological type of underlying
surfaces are shown to be uniformized by the same Kricke
space (respectively Teichmuller space).
@article{ZNSL_1988_167_a14,
author = {S. M. Natanzon},
title = {Topological type and moduli of {Riemannian} and {Klein} supersurfaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--185},
publisher = {mathdoc},
volume = {167},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a14/}
}
S. M. Natanzon. Topological type and moduli of Riemannian and Klein supersurfaces. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 179-185. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a14/