The Reidemeister and Nielsen zeta functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 164-168
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we formulate a rationality theorem for the Reidemeister and Nielsen zeta-functions modulo a normal subgroup of the fundamental group. We give conditions under which these zeta-functions coincide. We formulate a conjecture aboutentropy for the Reidemeister numbers. We show that the radius of convergence of the Nielsen zeta-function for an orientation-preserving homeomorphism $f$ of a compact surface is an invariant of a three-dimensional manifold, the torus of the map $f$, and a special flow on it. In special cases we derive a functional equation for the Nielsen zeta-function. We give an example of a transcendental Nielsen zeta function.
			
            
            
            
          
        
      @article{ZNSL_1988_167_a12,
     author = {A. L. Fel'shtyn},
     title = {The {Reidemeister} and {Nielsen} zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--168},
     publisher = {mathdoc},
     volume = {167},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a12/}
}
                      
                      
                    A. L. Fel'shtyn. The Reidemeister and Nielsen zeta functions. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 164-168. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a12/