On the radius of a compact set in Hilbert space
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 157-158

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we improve the formula $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$ proved by Routledge for Hilbert spaces. We show that if $A$ is a relatively compact set, then $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$.
@article{ZNSL_1988_167_a10,
     author = {N. M. Gulevich},
     title = {On the radius of a compact set in {Hilbert} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--158},
     publisher = {mathdoc},
     volume = {167},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a10/}
}
TY  - JOUR
AU  - N. M. Gulevich
TI  - On the radius of a compact set in Hilbert space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 157
EP  - 158
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a10/
LA  - ru
ID  - ZNSL_1988_167_a10
ER  - 
%0 Journal Article
%A N. M. Gulevich
%T On the radius of a compact set in Hilbert space
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 157-158
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a10/
%G ru
%F ZNSL_1988_167_a10
N. M. Gulevich. On the radius of a compact set in Hilbert space. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 157-158. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a10/