On the radius of a compact set in Hilbert space
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 157-158
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we improve the formula $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$ proved by Routledge for Hilbert spaces. We show that if $A$ is a relatively compact set, then $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$.
@article{ZNSL_1988_167_a10,
author = {N. M. Gulevich},
title = {On the radius of a compact set in {Hilbert} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--158},
publisher = {mathdoc},
volume = {167},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a10/}
}
N. M. Gulevich. On the radius of a compact set in Hilbert space. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 6, Tome 167 (1988), pp. 157-158. http://geodesic.mathdoc.fr/item/ZNSL_1988_167_a10/