On the strong law of large numbers for the middle part of a sample
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 8, Tome 166 (1988), pp. 25-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{X_n\}^\infty_{n=1}$ be a sequence of independent symmetric r.v.,
$\{X_{in}\}^\infty_{n=1}$ be the absolute order statistics. The behaviour of
$\sum^{n-r}_{i=1}X_{i,n}$ is studed.
			
            
            
            
          
        
      @article{ZNSL_1988_166_a3,
     author = {V. A. Egorov},
     title = {On the strong law of large numbers for the middle part of a sample},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {166},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_166_a3/}
}
                      
                      
                    V. A. Egorov. On the strong law of large numbers for the middle part of a sample. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 8, Tome 166 (1988), pp. 25-31. http://geodesic.mathdoc.fr/item/ZNSL_1988_166_a3/