Statistical problems of choice and synthesis of optimal algorithms
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 8, Tome 166 (1988), pp. 72-90
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Statistical approach to a construction of the optimal compound
algorithm under condition of bounded complexity is described.
It is shown that different variants of the problem are reducible
to the linear programming problem.
			
            
            
            
          
        
      @article{ZNSL_1988_166_a10,
     author = {N. N. Ljashenko and E. L. Evnevich},
     title = {Statistical problems of choice and synthesis of optimal algorithms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--90},
     publisher = {mathdoc},
     volume = {166},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_166_a10/}
}
                      
                      
                    TY - JOUR AU - N. N. Ljashenko AU - E. L. Evnevich TI - Statistical problems of choice and synthesis of optimal algorithms JO - Zapiski Nauchnykh Seminarov POMI PY - 1988 SP - 72 EP - 90 VL - 166 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1988_166_a10/ LA - ru ID - ZNSL_1988_166_a10 ER -
N. N. Ljashenko; E. L. Evnevich. Statistical problems of choice and synthesis of optimal algorithms. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 8, Tome 166 (1988), pp. 72-90. http://geodesic.mathdoc.fr/item/ZNSL_1988_166_a10/