Stability of eigenvalues of singular integral equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 17, Tome 165 (1987), pp. 136-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A complex number $\lambda$ is called the stable eigenvalue of an operator $A$ iff $\operatorname{Ker}(A-\lambda I+C)\ne\{\mathbb{O}\}$ for anv coropact operator $C$. In. the article the description is given of the stable- eigenvalues for a class of operators including some classical ones. Besides, there is discussed the stability of the whole point spectrum and the mutual stability of different eigenvalues.
@article{ZNSL_1987_165_a12,
     author = {L. N. Nikol'skaya},
     title = {Stability of eigenvalues of singular integral equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--142},
     year = {1987},
     volume = {165},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_165_a12/}
}
TY  - JOUR
AU  - L. N. Nikol'skaya
TI  - Stability of eigenvalues of singular integral equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 136
EP  - 142
VL  - 165
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_165_a12/
LA  - ru
ID  - ZNSL_1987_165_a12
ER  - 
%0 Journal Article
%A L. N. Nikol'skaya
%T Stability of eigenvalues of singular integral equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 136-142
%V 165
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_165_a12/
%G ru
%F ZNSL_1987_165_a12
L. N. Nikol'skaya. Stability of eigenvalues of singular integral equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 17, Tome 165 (1987), pp. 136-142. http://geodesic.mathdoc.fr/item/ZNSL_1987_165_a12/