Identities for the Rogers dilogarithm function connected with simple Lie algebras
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IX, Tome 164 (1987), pp. 121-133

Voir la notice de l'article provenant de la source Math-Net.Ru

New identities for Rogers dilogarithm function related to Lie algebras of $A_n$, series and tотоther classical Lie algebras of rank $\leq4$ are proved. Bibl. – 14.
@article{ZNSL_1987_164_a8,
     author = {A. N. Kirillov},
     title = {Identities for the {Rogers} dilogarithm function connected with simple {Lie} algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {164},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a8/}
}
TY  - JOUR
AU  - A. N. Kirillov
TI  - Identities for the Rogers dilogarithm function connected with simple Lie algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 121
EP  - 133
VL  - 164
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a8/
LA  - ru
ID  - ZNSL_1987_164_a8
ER  - 
%0 Journal Article
%A A. N. Kirillov
%T Identities for the Rogers dilogarithm function connected with simple Lie algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 121-133
%V 164
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a8/
%G ru
%F ZNSL_1987_164_a8
A. N. Kirillov. Identities for the Rogers dilogarithm function connected with simple Lie algebras. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IX, Tome 164 (1987), pp. 121-133. http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a8/