A statistical sum associated with Young diagrams
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IX, Tome 164 (1987), pp. 20-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic properties of the sums of powers of normalized dimensions of all irreducible complex representations of the symmetric group $S_N$ as $N\to\infty$ are studied. The limiting Gibbs measure on the space of Young diagrams is calculated. Our approach is related to a special one-dimensional many particles model. In the appendix written by A.M. Pass some numerical and graphic information on the “Helmholtz energy” for the model is presentede Bibl. – 10.
@article{ZNSL_1987_164_a2,
     author = {A. M. Vershik},
     title = {A statistical sum associated with {Young} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {164},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - A statistical sum associated with Young diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 20
EP  - 29
VL  - 164
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a2/
LA  - ru
ID  - ZNSL_1987_164_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%T A statistical sum associated with Young diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 20-29
%V 164
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a2/
%G ru
%F ZNSL_1987_164_a2
A. M. Vershik. A statistical sum associated with Young diagrams. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IX, Tome 164 (1987), pp. 20-29. http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a2/