Asymptotic dynamics and spectral analysis for the Schrödinger operator with weakly accelerating potential
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IX, Tome 164 (1987), pp. 10-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study the existence and completeness of generalized wave operators for the Schrödinger equation on a half-line with accelerating potential.
@article{ZNSL_1987_164_a1,
     author = {M. V. Buslaeva},
     title = {Asymptotic dynamics and spectral analysis for the {Schr\"odinger} operator with weakly accelerating potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {10--19},
     year = {1987},
     volume = {164},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a1/}
}
TY  - JOUR
AU  - M. V. Buslaeva
TI  - Asymptotic dynamics and spectral analysis for the Schrödinger operator with weakly accelerating potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 10
EP  - 19
VL  - 164
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a1/
LA  - ru
ID  - ZNSL_1987_164_a1
ER  - 
%0 Journal Article
%A M. V. Buslaeva
%T Asymptotic dynamics and spectral analysis for the Schrödinger operator with weakly accelerating potential
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 10-19
%V 164
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a1/
%G ru
%F ZNSL_1987_164_a1
M. V. Buslaeva. Asymptotic dynamics and spectral analysis for the Schrödinger operator with weakly accelerating potential. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IX, Tome 164 (1987), pp. 10-19. http://geodesic.mathdoc.fr/item/ZNSL_1987_164_a1/