On a variant of commutator estimates in spectral theory
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 29-36
Voir la notice de l'article provenant de la source Math-Net.Ru
For two orithree-particle Schrodinger operator $H$ thе positivity
of $\operatorname{Re}((H-\lambda)f,Af)$ is used to construct $H$-smooth
operators. Asymptotic completeness in the short-range case is
proved. The absence of embedded eigenvalues is a byproduct of
the method for two particle system.
@article{ZNSL_1987_163_a2,
author = {A. F. Vakulenko},
title = {On a variant of commutator estimates in spectral theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {29--36},
publisher = {mathdoc},
volume = {163},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a2/}
}
A. F. Vakulenko. On a variant of commutator estimates in spectral theory. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 29-36. http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a2/