On a variant of commutator estimates in spectral theory
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

For two orithree-particle Schrodinger operator $H$ thе positivity of $\operatorname{Re}((H-\lambda)f,Af)$ is used to construct $H$-smooth operators. Asymptotic completeness in the short-range case is proved. The absence of embedded eigenvalues is a byproduct of the method for two particle system.
@article{ZNSL_1987_163_a2,
     author = {A. F. Vakulenko},
     title = {On a variant of commutator estimates in spectral theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {163},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a2/}
}
TY  - JOUR
AU  - A. F. Vakulenko
TI  - On a variant of commutator estimates in spectral theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 29
EP  - 36
VL  - 163
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a2/
LA  - ru
ID  - ZNSL_1987_163_a2
ER  - 
%0 Journal Article
%A A. F. Vakulenko
%T On a variant of commutator estimates in spectral theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 29-36
%V 163
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a2/
%G ru
%F ZNSL_1987_163_a2
A. F. Vakulenko. On a variant of commutator estimates in spectral theory. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 29-36. http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a2/