Eikonal approximation for fast-decreasing potentials.~I
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 166-185
Voir la notice de l'article provenant de la source Math-Net.Ru
The Schrodinger equation with a potential
$gq(x)$, decreasing
quicker than any power of $|x|^{-1}$ at infinity, is considered
at an energy $k^2$. The full asymptotic expansion of its
wave function is constructed for $k\to\infty$, $g\leq Ck^{2-\gamma}$, $\gamma>0$.
This expansion is used to derive the asymptotics of the forward
scattering amplitude and of the total scattering cross-section.
@article{ZNSL_1987_163_a14,
author = {D. R. Yafaev},
title = {Eikonal approximation for fast-decreasing {potentials.~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--185},
publisher = {mathdoc},
volume = {163},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a14/}
}
D. R. Yafaev. Eikonal approximation for fast-decreasing potentials.~I. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 166-185. http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a14/