On subsets of Hilbert space having finite Hausdorff dimension
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 154-165
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1$, $X_2$ be Hilbert spaces, $X_2\subset X_1$, $X_2$ is dense in
$X_1$, the imbedding is compact, $M\subset X_2$, $\dim_H^{(i)}M$
and $h^{(i)}(M)$ are Hausdorff dimension and limit capacity (information
dimension) of the set $M$ with respect to the metric
of the space $X_i(i=1,2)$. Two examples are constructed.
1) An example of the set $M$ which is bounded in $X_2$ and such
that a) $h^{(1)}(M)\infty$ (and therefore
$\dim_H^{(1)}M\infty$) b) $M$ cannot be covered by a countable union of compact subsets
of $X_2$ (and therefore $\dim_H^{(2)}M=\infty$)). 2) An example
of the set $M$ which is compact in $X_2$ and such that
$h^{(1)}(M)\infty$ and $h^{(2)}(M)=\infty$.
@article{ZNSL_1987_163_a13,
author = {B. I. Shubov},
title = {On subsets of {Hilbert} space having finite {Hausdorff} dimension},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--165},
publisher = {mathdoc},
volume = {163},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a13/}
}
B. I. Shubov. On subsets of Hilbert space having finite Hausdorff dimension. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 154-165. http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a13/