Convergent difference schemes for the equations of filtration of fluids with delay.~II
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 138-142
Voir la notice de l'article provenant de la source Math-Net.Ru
Convergent finite-difference schemes for the equations of
the filtration viscous fluids of Maxwell type, Oldroyd type and
Kelvin-Voight type of order $L=1,2,\dots$ are given.
@article{ZNSL_1987_163_a10,
author = {A. P. Oskolkov and M. M. Achmatov},
title = {Convergent difference schemes for the equations of filtration of fluids with {delay.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--142},
publisher = {mathdoc},
volume = {163},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a10/}
}
TY - JOUR AU - A. P. Oskolkov AU - M. M. Achmatov TI - Convergent difference schemes for the equations of filtration of fluids with delay.~II JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 138 EP - 142 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a10/ LA - ru ID - ZNSL_1987_163_a10 ER -
A. P. Oskolkov; M. M. Achmatov. Convergent difference schemes for the equations of filtration of fluids with delay.~II. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 138-142. http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a10/