Best possible smoothness of solutions of variational inequalities in the case of convex constraints on the boundary of the domain
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 5-16
Voir la notice de l'article provenant de la source Math-Net.Ru
The best possible regularity of the solutions of the variational
inequalities with nonlinear operators and arbitrary convex
constraints on the boundary is proved.
@article{ZNSL_1987_163_a0,
author = {A. A. Arkhipova and N. N. Ural'tseva},
title = {Best possible smoothness of solutions of variational inequalities in the case of convex constraints on the boundary of the domain},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--16},
publisher = {mathdoc},
volume = {163},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a0/}
}
TY - JOUR AU - A. A. Arkhipova AU - N. N. Ural'tseva TI - Best possible smoothness of solutions of variational inequalities in the case of convex constraints on the boundary of the domain JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 5 EP - 16 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a0/ LA - ru ID - ZNSL_1987_163_a0 ER -
%0 Journal Article %A A. A. Arkhipova %A N. N. Ural'tseva %T Best possible smoothness of solutions of variational inequalities in the case of convex constraints on the boundary of the domain %J Zapiski Nauchnykh Seminarov POMI %D 1987 %P 5-16 %V 163 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a0/ %G ru %F ZNSL_1987_163_a0
A. A. Arkhipova; N. N. Ural'tseva. Best possible smoothness of solutions of variational inequalities in the case of convex constraints on the boundary of the domain. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Tome 163 (1987), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_1987_163_a0/