Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part III, Tome 162 (1987), pp. 159-168
Voir la notice de l'article provenant de la source Math-Net.Ru
Attractors $M$ and dynamical Systems $\{M;V_t,-\infty$
generated by the initial-boundary value problems for tridimensional
equations motion of the Oldroyd fluids order $L=1,2,\dots$, and
threedimensional equations motion of the Kelvin–Voight fluids
order $L=0,1,2,\dots$ are described.
@article{ZNSL_1987_162_a4,
author = {N. A. Karazeeva and A. P. Oskolkov},
title = {Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--168},
publisher = {mathdoc},
volume = {162},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a4/}
}
TY - JOUR AU - N. A. Karazeeva AU - A. P. Oskolkov TI - Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 159 EP - 168 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a4/ LA - ru ID - ZNSL_1987_162_a4 ER -
%0 Journal Article %A N. A. Karazeeva %A A. P. Oskolkov %T Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids %J Zapiski Nauchnykh Seminarov POMI %D 1987 %P 159-168 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a4/ %G ru %F ZNSL_1987_162_a4
N. A. Karazeeva; A. P. Oskolkov. Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part III, Tome 162 (1987), pp. 159-168. http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a4/