Analytic continuation of $\zeta_3(s,k)$ in the critical strip. Arithmetical part
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part III, Tome 162 (1987), pp. 43-76
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the zeta-function
$$
\zeta_3(s,k)=\sum^\infty_{n=1}\frac{\tau_3(n)\tau_3(n+k)}{(\sqrt{n(n+k)})^s}
$$
with the help of the technique of automorphic functions for $SL_3(Z)$.
@article{ZNSL_1987_162_a1,
author = {A. I. Vinogradov},
title = {Analytic continuation of $\zeta_3(s,k)$ in the critical strip. {Arithmetical} part},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--76},
publisher = {mathdoc},
volume = {162},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a1/}
}
A. I. Vinogradov. Analytic continuation of $\zeta_3(s,k)$ in the critical strip. Arithmetical part. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part III, Tome 162 (1987), pp. 43-76. http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a1/