Examples of effective solution of the Riemann-Hilbert problem on renewal of a differential equation with monodromy group in the framework of the theory of automorphic functions
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part III, Tome 162 (1987), pp. 5-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the classical problem of reconstructing a differential equation from a given monodromy group $\Gamma$ in the situation when $\Gamma$ is a Fuchsian group of the first kind of topological genus zero. We also give a survey of the algebrotopological theory which describes the structure of the subgroups of $\Gamma$, and we give examples of the calculation of the corresponding modular equations.
@article{ZNSL_1987_162_a0,
author = {A. B. Venkov},
title = {Examples of effective solution of the {Riemann-Hilbert} problem on renewal of a differential equation with monodromy group in the framework of the theory of automorphic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--42},
publisher = {mathdoc},
volume = {162},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a0/}
}
TY - JOUR AU - A. B. Venkov TI - Examples of effective solution of the Riemann-Hilbert problem on renewal of a differential equation with monodromy group in the framework of the theory of automorphic functions JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 5 EP - 42 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a0/ LA - ru ID - ZNSL_1987_162_a0 ER -
%0 Journal Article %A A. B. Venkov %T Examples of effective solution of the Riemann-Hilbert problem on renewal of a differential equation with monodromy group in the framework of the theory of automorphic functions %J Zapiski Nauchnykh Seminarov POMI %D 1987 %P 5-42 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a0/ %G ru %F ZNSL_1987_162_a0
A. B. Venkov. Examples of effective solution of the Riemann-Hilbert problem on renewal of a differential equation with monodromy group in the framework of the theory of automorphic functions. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part III, Tome 162 (1987), pp. 5-42. http://geodesic.mathdoc.fr/item/ZNSL_1987_162_a0/