Proof of identities which arise in the calculation of form-factors in the sine-Gordon model
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 98-121
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The formulas are presented f o r the form-factors in the sine-Gordon
model. It is shown that these form-factors satisfy series
of identies.
			
            
            
            
          
        
      @article{ZNSL_1987_161_a8,
     author = {F. A. Smirnov},
     title = {Proof of identities which arise in the calculation of form-factors in the {sine-Gordon} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--121},
     publisher = {mathdoc},
     volume = {161},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a8/}
}
                      
                      
                    TY - JOUR AU - F. A. Smirnov TI - Proof of identities which arise in the calculation of form-factors in the sine-Gordon model JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 98 EP - 121 VL - 161 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a8/ LA - ru ID - ZNSL_1987_161_a8 ER -
F. A. Smirnov. Proof of identities which arise in the calculation of form-factors in the sine-Gordon model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 98-121. http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a8/