The method of isomonodromic deformations for the ``degenerate'' third Painleve equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 45-53

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to investigate solutions of the equation $(\tau u_\tau)_\tau=e^u-e^{-2u}$, which is a variant of the “degenerate” third Painleve equation, some linear differential equation in $3\times3$ matrices is considered. We parametrize asymptotics of solutions of the nonlinear Painleve equation at $\tau\to0$ as well as asymptotics of the regular solutions at $\tau\to\pm\infty$ in terms of the monodromy data of the linear equation.
@article{ZNSL_1987_161_a3,
     author = {A. V. Kitaev},
     title = {The method of isomonodromic deformations for the ``degenerate'' third {Painleve} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {161},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a3/}
}
TY  - JOUR
AU  - A. V. Kitaev
TI  - The method of isomonodromic deformations for the ``degenerate'' third Painleve equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 45
EP  - 53
VL  - 161
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a3/
LA  - ru
ID  - ZNSL_1987_161_a3
ER  - 
%0 Journal Article
%A A. V. Kitaev
%T The method of isomonodromic deformations for the ``degenerate'' third Painleve equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 45-53
%V 161
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a3/
%G ru
%F ZNSL_1987_161_a3
A. V. Kitaev. The method of isomonodromic deformations for the ``degenerate'' third Painleve equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 45-53. http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a3/