Critical properties and correlation functions of the eight-vertex model on a quasicrystal
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 13-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The critical exponents of completely integrable models i n quasi-crystals coincides with critical exponents of corresponding crystal models. We present classification of thermodinamic phases of eight-vertex model and correlation function of Ising model in quasicrystal.
@article{ZNSL_1987_161_a1,
     author = {N. V. Antonov and V. E. Korepin},
     title = {Critical properties and correlation functions of the eight-vertex model on a quasicrystal},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {161},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - V. E. Korepin
TI  - Critical properties and correlation functions of the eight-vertex model on a quasicrystal
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 13
EP  - 23
VL  - 161
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/
LA  - ru
ID  - ZNSL_1987_161_a1
ER  - 
%0 Journal Article
%A N. V. Antonov
%A V. E. Korepin
%T Critical properties and correlation functions of the eight-vertex model on a quasicrystal
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 13-23
%V 161
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/
%G ru
%F ZNSL_1987_161_a1
N. V. Antonov; V. E. Korepin. Critical properties and correlation functions of the eight-vertex model on a quasicrystal. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 13-23. http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/