Critical properties and correlation functions of the eight-vertex model on a quasicrystal
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 13-23
Voir la notice de l'article provenant de la source Math-Net.Ru
The critical exponents of completely integrable models i n quasi-crystals coincides with critical exponents of corresponding
crystal models. We present classification of thermodinamic phases
of eight-vertex model and correlation function of Ising model
in quasicrystal.
@article{ZNSL_1987_161_a1,
author = {N. V. Antonov and V. E. Korepin},
title = {Critical properties and correlation functions of the eight-vertex model on a quasicrystal},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {13--23},
publisher = {mathdoc},
volume = {161},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/}
}
TY - JOUR AU - N. V. Antonov AU - V. E. Korepin TI - Critical properties and correlation functions of the eight-vertex model on a quasicrystal JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 13 EP - 23 VL - 161 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/ LA - ru ID - ZNSL_1987_161_a1 ER -
N. V. Antonov; V. E. Korepin. Critical properties and correlation functions of the eight-vertex model on a quasicrystal. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 7, Tome 161 (1987), pp. 13-23. http://geodesic.mathdoc.fr/item/ZNSL_1987_161_a1/