Arithmetic of quaternions and Eisenstein series
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 82-90
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper one computes the Fourier coefficients of the Eisenstein series of the orthogonal group of signature $(1,4)$. The formulas show that the restriction of the Eisenstein series to the “imaginary” axis is a Dirichlet series, whose coefficients are the products of the $L$-series by the number of the representations of the given number as a sum of three squares.
@article{ZNSL_1987_160_a7,
author = {V. A. Gritsenko},
title = {Arithmetic of quaternions and {Eisenstein} series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--90},
publisher = {mathdoc},
volume = {160},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a7/}
}
V. A. Gritsenko. Arithmetic of quaternions and Eisenstein series. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 82-90. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a7/