On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 72-81

Voir la notice de l'article provenant de la source Math-Net.Ru

The fundamental result of the paper is the following theorem: suppose that the Riemann conjecture is valid for the Dedekind $\xi$-functions of all fields $\mathbb{Q}\Bigl(\Bigl(\frac{1+\sqrt{5}}{2}\Bigr)^{1/k},1^{1/k}\Bigr)$ Then there exists a constant $C>0$ such that on the interval $p\leq x$ one can find at least $Cx\log^{-1}x$ prime numbers $p$ for which $h(Sp^2)=2$. Here $h(d)$ is the number of proper equivalence classes of primitive binary quadratic forms of discriminant $d$. In addition, it is proved that $$ \sum_{p\leq x}h(Sp^2)\log p=O(x^{3/2}). $$ For these sequence of discriminants of a special form with increasing square-free part, one has obtained a nontrivial estimate from above for the number of classes.
@article{ZNSL_1987_160_a6,
     author = {E. P. Golubeva},
     title = {On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--81},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 72
EP  - 81
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/
LA  - ru
ID  - ZNSL_1987_160_a6
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 72-81
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/
%G ru
%F ZNSL_1987_160_a6
E. P. Golubeva. On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 72-81. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/