On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 72-81
Cet article a éte moissonné depuis la source Math-Net.Ru
The fundamental result of the paper is the following theorem: suppose that the Riemann conjecture is valid for the Dedekind $\xi$-functions of all fields $\mathbb{Q}\Bigl(\Bigl(\frac{1+\sqrt{5}}{2}\Bigr)^{1/k},1^{1/k}\Bigr)$ Then there exists a constant $C>0$ such that on the interval $p\leq x$ one can find at least $Cx\log^{-1}x$ prime numbers $p$ for which $h(Sp^2)=2$. Here $h(d)$ is the number of proper equivalence classes of primitive binary quadratic forms of discriminant $d$. In addition, it is proved that $$ \sum_{p\leq x}h(Sp^2)\log p=O(x^{3/2}). $$ For these sequence of discriminants of a special form with increasing square-free part, one has obtained a nontrivial estimate from above for the number of classes.
@article{ZNSL_1987_160_a6,
author = {E. P. Golubeva},
title = {On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--81},
year = {1987},
volume = {160},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/}
}
TY - JOUR AU - E. P. Golubeva TI - On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 72 EP - 81 VL - 160 UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/ LA - ru ID - ZNSL_1987_160_a6 ER -
%0 Journal Article %A E. P. Golubeva %T On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields %J Zapiski Nauchnykh Seminarov POMI %D 1987 %P 72-81 %V 160 %U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/ %G ru %F ZNSL_1987_160_a6
E. P. Golubeva. On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 72-81. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a6/