Asymptotic distribution of integral points on the three-dimensional sphere
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 54-71
Voir la notice du chapitre de livre
Let $Q(X)=x_1^2+x_2^2+x_3^2$, $X=(x_1,x_2,x_3)$; $r(n)$ be the number of integral solutions of the equation \begin{equation} Q(X)=n. \tag{1} \end{equation} The following theorem is proved: $n=1,2,3,5,6\, (\operatorname{mod}8)$ and let $r(n,\Omega)$ be the number of integral solutions of equation (1) such that $Y=X/\sqrt{n}\in\Omega$ where $\Omega$ is an arbitrary convex domain with a piecewise smooth boundary on the unit sphere $S$: $Q(Y)=1$. Then $$ r(n,\Omega)=\mu(\Omega)r(n)+O(n^{1/2-1/336+\varepsilon}),\qquad n\to\infty, $$ where $\mu(\Omega)$ is a measure, normalized by the condition $\mu(S)=1$. A similar result is obtained for the three-dimensional ellipsoid of general form. The mentioned theorem, in combination with the classical Guass–Siegel results on $r(n)$, yields the uniform distribution of the integral points on the three-dimensional sphere (1).
@article{ZNSL_1987_160_a5,
author = {E. P. Golubeva and O. M. Fomenko},
title = {Asymptotic distribution of integral points on the three-dimensional sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--71},
year = {1987},
volume = {160},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a5/}
}
E. P. Golubeva; O. M. Fomenko. Asymptotic distribution of integral points on the three-dimensional sphere. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 54-71. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a5/