Asymptotic distribution of integral points on the three-dimensional sphere
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 54-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Q(X)=x_1^2+x_2^2+x_3^2$, $X=(x_1,x_2,x_3)$; $r(n)$ be the number of integral solutions of the equation 
\begin{equation}
Q(X)=n.
\tag{1}
\end{equation}
The following theorem is proved: $n=1,2,3,5,6\, (\operatorname{mod}8)$ and let $r(n,\Omega)$ be the number of integral solutions of equation (1) such that $Y=X/\sqrt{n}\in\Omega$ where $\Omega$ is an arbitrary convex domain with a piecewise smooth boundary on the unit sphere $S$: $Q(Y)=1$. Then 
$$
r(n,\Omega)=\mu(\Omega)r(n)+O(n^{1/2-1/336+\varepsilon}),\qquad n\to\infty, 
$$ 
where $\mu(\Omega)$ is a measure, normalized by the condition $\mu(S)=1$. A similar result is obtained for the three-dimensional ellipsoid of general form. The mentioned theorem, in combination with the classical Guass–Siegel results on $r(n)$, yields the uniform distribution of the integral points on the three-dimensional sphere (1).
			
            
            
            
          
        
      @article{ZNSL_1987_160_a5,
     author = {E. P. Golubeva and O. M. Fomenko},
     title = {Asymptotic distribution of integral points on the three-dimensional sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--71},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a5/}
}
                      
                      
                    TY - JOUR AU - E. P. Golubeva AU - O. M. Fomenko TI - Asymptotic distribution of integral points on the three-dimensional sphere JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 54 EP - 71 VL - 160 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a5/ LA - ru ID - ZNSL_1987_160_a5 ER -
E. P. Golubeva; O. M. Fomenko. Asymptotic distribution of integral points on the three-dimensional sphere. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 54-71. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a5/