Poincare series in $SL(3,\mathbb{R})$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 37-40

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that in the spectral decomposition of the one-parameter Poincaré series from $SL(3,\mathbb{R})$ involves only the discrete spectrum, induced from $SL_2$ and not the discrete spectrum of $SL_3$ itself.
@article{ZNSL_1987_160_a3,
     author = {A. I. Vinogradov},
     title = {Poincare series in $SL(3,\mathbb{R})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--40},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a3/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Poincare series in $SL(3,\mathbb{R})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 37
EP  - 40
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a3/
LA  - ru
ID  - ZNSL_1987_160_a3
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Poincare series in $SL(3,\mathbb{R})$
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 37-40
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a3/
%G ru
%F ZNSL_1987_160_a3
A. I. Vinogradov. Poincare series in $SL(3,\mathbb{R})$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 37-40. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a3/