Some examples of semigroup algebras of finite representation type
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 229-238
Voir la notice de l'article provenant de la source Math-Net.Ru
The semigroup algebras over a field $K$ of the semigroups $T_n$ of all permutations of a set of $n$ elements are considered. It is proved: if $n\leq3$ and $(n!)^{-1}\in K$ then the algebra $KT_n$ has a finite representation type. Also the finiteness of the representation type of the semigroup algebra $KS$ is established, where $S$ is the sub-semigroup of $T_n$ ($n$ is arbitrary) such that $S=J_n\cup G$ where $J_n=\{x\in T_n|\operatorname{rank}x=1\}$, while $G$ is a doubly transitive subgroup of the symmetric group $S_n$, the order of $G$ being invertible in $K$.
@article{ZNSL_1987_160_a21,
author = {I. S. Ponizovskii},
title = {Some examples of semigroup algebras of finite representation type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {229--238},
publisher = {mathdoc},
volume = {160},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a21/}
}
I. S. Ponizovskii. Some examples of semigroup algebras of finite representation type. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 229-238. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a21/