Some examples of semigroup algebras of finite representation type
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 229-238

Voir la notice de l'article provenant de la source Math-Net.Ru

The semigroup algebras over a field $K$ of the semigroups $T_n$ of all permutations of a set of $n$ elements are considered. It is proved: if $n\leq3$ and $(n!)^{-1}\in K$ then the algebra $KT_n$ has a finite representation type. Also the finiteness of the representation type of the semigroup algebra $KS$ is established, where $S$ is the sub-semigroup of $T_n$ ($n$ is arbitrary) such that $S=J_n\cup G$ where $J_n=\{x\in T_n|\operatorname{rank}x=1\}$, while $G$ is a doubly transitive subgroup of the symmetric group $S_n$, the order of $G$ being invertible in $K$.
@article{ZNSL_1987_160_a21,
     author = {I. S. Ponizovskii},
     title = {Some examples of semigroup algebras of finite representation type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {229--238},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a21/}
}
TY  - JOUR
AU  - I. S. Ponizovskii
TI  - Some examples of semigroup algebras of finite representation type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 229
EP  - 238
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a21/
LA  - ru
ID  - ZNSL_1987_160_a21
ER  - 
%0 Journal Article
%A I. S. Ponizovskii
%T Some examples of semigroup algebras of finite representation type
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 229-238
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a21/
%G ru
%F ZNSL_1987_160_a21
I. S. Ponizovskii. Some examples of semigroup algebras of finite representation type. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 229-238. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a21/