Homological stabilization for the symplectic and orthogonal groups
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 222-228
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for a commutative ring $R$ with identity and without finite residue $R$, fields, the integral groups of homologies $Hp(sp_{2n}(R))$ and $Hp(O_{2n}(R))$ for a fixed $p$ do not vary with the growth of $n$ only if $n\geq2p+\dim X$. Here $\dim X$ is the Krull $\dim X$-dimension of the spectrum of the maximal ideals of the ring $R$.
@article{ZNSL_1987_160_a20,
author = {I. A. Panin},
title = {Homological stabilization for the symplectic and orthogonal groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {222--228},
publisher = {mathdoc},
volume = {160},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a20/}
}
I. A. Panin. Homological stabilization for the symplectic and orthogonal groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 222-228. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a20/