Homological stabilization for the symplectic and orthogonal groups
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 222-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that for a commutative ring $R$ with identity and without finite residue $R$, fields, the integral groups of homologies $Hp(sp_{2n}(R))$ and $Hp(O_{2n}(R))$ for a fixed $p$ do not vary with the growth of $n$ only if $n\geq2p+\dim X$. Here $\dim X$ is the Krull $\dim X$-dimension of the spectrum of the maximal ideals of the ring $R$.
@article{ZNSL_1987_160_a20,
     author = {I. A. Panin},
     title = {Homological stabilization for the symplectic and orthogonal groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--228},
     year = {1987},
     volume = {160},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a20/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - Homological stabilization for the symplectic and orthogonal groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 222
EP  - 228
VL  - 160
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a20/
LA  - ru
ID  - ZNSL_1987_160_a20
ER  - 
%0 Journal Article
%A I. A. Panin
%T Homological stabilization for the symplectic and orthogonal groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 222-228
%V 160
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a20/
%G ru
%F ZNSL_1987_160_a20
I. A. Panin. Homological stabilization for the symplectic and orthogonal groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 222-228. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a20/