Invariants of symmetric and alternating groups
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 201-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A theorem is proved on the growth of the codimension and the defect of the algebras of the invariants of symmetric and alternating groups with the growth of the dimension of the representations without trivial components, containing irreducible, non-one-dimensional, nonstandard subrepresentations.
@article{ZNSL_1987_160_a18,
     author = {N. L. Gordeev},
     title = {Invariants of symmetric and alternating groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {201--210},
     year = {1987},
     volume = {160},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a18/}
}
TY  - JOUR
AU  - N. L. Gordeev
TI  - Invariants of symmetric and alternating groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 201
EP  - 210
VL  - 160
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a18/
LA  - ru
ID  - ZNSL_1987_160_a18
ER  - 
%0 Journal Article
%A N. L. Gordeev
%T Invariants of symmetric and alternating groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 201-210
%V 160
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a18/
%G ru
%F ZNSL_1987_160_a18
N. L. Gordeev. Invariants of symmetric and alternating groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 201-210. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a18/