Estimats of the inhomogeneous arithmetical minimum of the product of linear forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 138-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Further refinements of Chebotarev type estimates are obtained for the inhomogeneous arithmetic minimum $M_n$ of a lattice $\Lambda$ of determinant $d(\Lambda)$ in the inhomogeneous Minkowski conjecture. In particular, it is proved that for every $n_0\geq2$ there exists an effectively computed constant $c=c(n_0)$ for which $$ M_n\leq2^{-n/2}(cn^{-1/2}\log^{1/2}n)d(\Lambda). $$
@article{ZNSL_1987_160_a12,
     author = {A. V. Malyshev},
     title = {Estimats of the inhomogeneous arithmetical minimum of the product of linear forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--150},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a12/}
}
TY  - JOUR
AU  - A. V. Malyshev
TI  - Estimats of the inhomogeneous arithmetical minimum of the product of linear forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 138
EP  - 150
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a12/
LA  - ru
ID  - ZNSL_1987_160_a12
ER  - 
%0 Journal Article
%A A. V. Malyshev
%T Estimats of the inhomogeneous arithmetical minimum of the product of linear forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 138-150
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a12/
%G ru
%F ZNSL_1987_160_a12
A. V. Malyshev. Estimats of the inhomogeneous arithmetical minimum of the product of linear forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 138-150. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a12/