The potential of the Weil-Petersson metric on Torelli space
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 110-120

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the function $12\pi\log(Z^\prime(1)/\det\operatorname{Im}\tau)$, where $Z(s)$ is Sel'berg zeta function and $\tau$ is the matrix of the periods of a distinguished Riemann surface, is a potential of the Weil-Petersson metric on the Torelli space.
@article{ZNSL_1987_160_a10,
     author = {P. G. Zograf and L. A. Takhtadzhyan},
     title = {The potential of the {Weil-Petersson} metric on {Torelli} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--120},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a10/}
}
TY  - JOUR
AU  - P. G. Zograf
AU  - L. A. Takhtadzhyan
TI  - The potential of the Weil-Petersson metric on Torelli space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 110
EP  - 120
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a10/
LA  - ru
ID  - ZNSL_1987_160_a10
ER  - 
%0 Journal Article
%A P. G. Zograf
%A L. A. Takhtadzhyan
%T The potential of the Weil-Petersson metric on Torelli space
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 110-120
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a10/
%G ru
%F ZNSL_1987_160_a10
P. G. Zograf; L. A. Takhtadzhyan. The potential of the Weil-Petersson metric on Torelli space. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 110-120. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a10/