The potential of the Weil-Petersson metric on Torelli space
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 110-120
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the function $12\pi\log(Z^\prime(1)/\det\operatorname{Im}\tau)$, where $Z(s)$ is Sel'berg zeta function and $\tau$ is the matrix of the periods of a distinguished Riemann surface, is a potential of the Weil-Petersson metric on the Torelli space.
@article{ZNSL_1987_160_a10,
author = {P. G. Zograf and L. A. Takhtadzhyan},
title = {The potential of the {Weil-Petersson} metric on {Torelli} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--120},
publisher = {mathdoc},
volume = {160},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a10/}
}
P. G. Zograf; L. A. Takhtadzhyan. The potential of the Weil-Petersson metric on Torelli space. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 110-120. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a10/