Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 83-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$, $1$ (with arbitrary smoothness function $\omega$) are studied. In particular, symmetric hulls of these spaces are described, necessary and sufficient conditions of imbedding in Orlicz and Lorentz spaces are derived, and unimprovable bounds of the moduli of continuity in $L_q$, $p$, are given.
@article{ZNSL_1987_159_a7,
     author = {Yu. V. Netrusov},
     title = {Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--102},
     publisher = {mathdoc},
     volume = {159},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a7/}
}
TY  - JOUR
AU  - Yu. V. Netrusov
TI  - Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 83
EP  - 102
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a7/
LA  - ru
ID  - ZNSL_1987_159_a7
ER  - 
%0 Journal Article
%A Yu. V. Netrusov
%T Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 83-102
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a7/
%G ru
%F ZNSL_1987_159_a7
Yu. V. Netrusov. Imbedding theorems for the spaces $H_p^{\omega,k}$ and $H_p^{s,\omega,k}$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 83-102. http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a7/