Theorems of imbedding Besov spaces into ideal spaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 69-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper examines imbeddings of Besov spaces $B^\omega_{E,\theta}$ in ideal spaces (Banach lattices) given that $\omega\in S_{k_\omega}$). In particular, the symmetric hull of the space $B^\omega_{E,\theta}$ is described ($E$ is a symmetric space), an inequality of different metrics is obtained, and imbeddings in Orlicz and Lorentz spaces and in some weighted spaces are studied. Most of the results are easily extended to the anisotropic case.
@article{ZNSL_1987_159_a6,
     author = {Yu. V. Netrusov},
     title = {Theorems of imbedding {Besov} spaces into ideal spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {159},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a6/}
}
TY  - JOUR
AU  - Yu. V. Netrusov
TI  - Theorems of imbedding Besov spaces into ideal spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 69
EP  - 82
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a6/
LA  - ru
ID  - ZNSL_1987_159_a6
ER  - 
%0 Journal Article
%A Yu. V. Netrusov
%T Theorems of imbedding Besov spaces into ideal spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 69-82
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a6/
%G ru
%F ZNSL_1987_159_a6
Yu. V. Netrusov. Theorems of imbedding Besov spaces into ideal spaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 69-82. http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a6/