Theorems of imbedding Besov spaces into ideal spaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 69-82
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper examines imbeddings of Besov spaces $B^\omega_{E,\theta}$ in ideal spaces (Banach lattices) given that $\omega\in S_{k_\omega}$). In particular, the symmetric hull of the space $B^\omega_{E,\theta}$ is described ($E$ is a symmetric space), an inequality of different metrics is obtained, and imbeddings in Orlicz and Lorentz spaces and in some weighted spaces are studied. Most of the results are easily extended to the anisotropic case.
@article{ZNSL_1987_159_a6,
author = {Yu. V. Netrusov},
title = {Theorems of imbedding {Besov} spaces into ideal spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {69--82},
year = {1987},
volume = {159},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a6/}
}
Yu. V. Netrusov. Theorems of imbedding Besov spaces into ideal spaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 69-82. http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a6/