Stability of optimal structured schedule
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 56-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of the optimal structured schedule is proved for a criterion generalizing the sum and the maximum criteria, i.e., it is proved that rearrangement of the optimal schedule following a unit change in the length of a job requires $O(n)$ operations, where $n$ is the number of jobs.
@article{ZNSL_1987_159_a5,
     author = {N. B. Lebedinskaya and T. E. Safonova},
     title = {Stability of optimal structured schedule},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {159},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a5/}
}
TY  - JOUR
AU  - N. B. Lebedinskaya
AU  - T. E. Safonova
TI  - Stability of optimal structured schedule
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 56
EP  - 68
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a5/
LA  - ru
ID  - ZNSL_1987_159_a5
ER  - 
%0 Journal Article
%A N. B. Lebedinskaya
%A T. E. Safonova
%T Stability of optimal structured schedule
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 56-68
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a5/
%G ru
%F ZNSL_1987_159_a5
N. B. Lebedinskaya; T. E. Safonova. Stability of optimal structured schedule. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 56-68. http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a5/