The method of lines in application to some two-dimensional nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 132-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the first mixed problem for nonlinear parabolic equation. Assuming that the exact solution of the problem is $u(t,x,y)\in C^{4,0}(Q)$, $Q=\{(x,y)\in\Omega,0\leq t\leq T\}$ we construct a scheme of the method of straight lines of accuracy $O(h^2)$ for the cases when $\Omega$ is a rectangle or a trapezoid.
@article{ZNSL_1987_159_a13,
author = {A. P. Kubanskaya},
title = {The method of lines in application to some two-dimensional nonlinear parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--142},
publisher = {mathdoc},
volume = {159},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a13/}
}
TY - JOUR AU - A. P. Kubanskaya TI - The method of lines in application to some two-dimensional nonlinear parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 132 EP - 142 VL - 159 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a13/ LA - ru ID - ZNSL_1987_159_a13 ER -
A. P. Kubanskaya. The method of lines in application to some two-dimensional nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 132-142. http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a13/