The dual of the Sobolev space of vector-valued functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 119-120

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are derived for the equality $W^\ell E(X)^\ast=W^\ell E^\prime(X^\ast)$, where $E$ is a symmetric space, $X$ a Banach space, $\ell>0$ is an integer.
@article{ZNSL_1987_159_a10,
     author = {A. V. Bukhvalov},
     title = {The dual of the {Sobolev} space of vector-valued functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--120},
     publisher = {mathdoc},
     volume = {159},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a10/}
}
TY  - JOUR
AU  - A. V. Bukhvalov
TI  - The dual of the Sobolev space of vector-valued functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 119
EP  - 120
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a10/
LA  - ru
ID  - ZNSL_1987_159_a10
ER  - 
%0 Journal Article
%A A. V. Bukhvalov
%T The dual of the Sobolev space of vector-valued functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 119-120
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a10/
%G ru
%F ZNSL_1987_159_a10
A. V. Bukhvalov. The dual of the Sobolev space of vector-valued functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 8, Tome 159 (1987), pp. 119-120. http://geodesic.mathdoc.fr/item/ZNSL_1987_159_a10/