Distribution density of the norm of a stable vector
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 105-114

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a Banach space, $X$ be a stable $B$-valued random vector with exponent $\alpha\in(0,2)$, a $p(\cdot)$, and $p(\cdot)$ be the distribution density of the norm of $X$. In this paper we study the question of the boundedness of $p$. In particular, we construct examples of a space $B$ with a symmetric stable vector $X$ with exponent $\alpha\in(1,2)$ with unbounded $p$ and prove that if $X$ is a nondegenerate strictly stable vector with exponent $\alpha\in(0,1)$, then $p$ is bounded.
@article{ZNSL_1987_158_a8,
     author = {M. A. Lifshits},
     title = {Distribution density of the norm of a stable vector},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {158},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a8/}
}
TY  - JOUR
AU  - M. A. Lifshits
TI  - Distribution density of the norm of a stable vector
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 105
EP  - 114
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a8/
LA  - ru
ID  - ZNSL_1987_158_a8
ER  - 
%0 Journal Article
%A M. A. Lifshits
%T Distribution density of the norm of a stable vector
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 105-114
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a8/
%G ru
%F ZNSL_1987_158_a8
M. A. Lifshits. Distribution density of the norm of a stable vector. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 105-114. http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a8/