The law of iterated logarithm for quadratic variations
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 72-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal{P}_a$ be the class of those partitions $\pi$ of intervals $[0;T]$, such that $|t_i-t_{i-1}|>a$, where $a$ is a constant, $V(T,\mathcal{P}_a)=\underset{\pi\in\mathcal{P}_a}{\operatorname{sup}}\sum_i(w(t_i)-w(t_{i-1}))^2$. It is proved that for any $a$ $\lim V(T,\mathcal{P}_a)/2T\ln_2T=1$ a. s., where $\ln_2x=\ln\ln x$, if $\ln x\geq e$, $\ln_2x=1$, if $\ln x$.
@article{ZNSL_1987_158_a6,
author = {V. A. Egorov},
title = {The law of iterated logarithm for quadratic variations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--80},
publisher = {mathdoc},
volume = {158},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a6/}
}
V. A. Egorov. The law of iterated logarithm for quadratic variations. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 72-80. http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a6/