Monotonity of the mean distance for empirical Gaussian samples
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 167-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The monotonicity is proved of the mean distance in the sense of Kantorovich for two repeatedly independently obtained dependent Gaussian samples with respect to the natural order in the space of Gaussian centered measures in a finite-dimensional coordinate space.
@article{ZNSL_1987_158_a17,
     author = {V. N. Sudakov},
     title = {Monotonity of the mean distance for empirical {Gaussian} samples},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--168},
     publisher = {mathdoc},
     volume = {158},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a17/}
}
TY  - JOUR
AU  - V. N. Sudakov
TI  - Monotonity of the mean distance for empirical Gaussian samples
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 167
EP  - 168
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a17/
LA  - ru
ID  - ZNSL_1987_158_a17
ER  - 
%0 Journal Article
%A V. N. Sudakov
%T Monotonity of the mean distance for empirical Gaussian samples
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 167-168
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a17/
%G ru
%F ZNSL_1987_158_a17
V. N. Sudakov. Monotonity of the mean distance for empirical Gaussian samples. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 167-168. http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a17/