Random elements in the Orticz spaces
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 127-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We give sufficient conditions for random elements of $L_1(T,\alpha,\mu)$ to belong to $L^\varphi(T,\alpha,\mu)$ the Orlicz space.
@article{ZNSL_1987_158_a11,
     author = {A. E. Mikhailov},
     title = {Random elements in the {Orticz} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {158},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a11/}
}
TY  - JOUR
AU  - A. E. Mikhailov
TI  - Random elements in the Orticz spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 127
EP  - 132
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a11/
LA  - ru
ID  - ZNSL_1987_158_a11
ER  - 
%0 Journal Article
%A A. E. Mikhailov
%T Random elements in the Orticz spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 127-132
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a11/
%G ru
%F ZNSL_1987_158_a11
A. E. Mikhailov. Random elements in the Orticz spaces. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part X, Tome 158 (1987), pp. 127-132. http://geodesic.mathdoc.fr/item/ZNSL_1987_158_a11/