She quantitative version of the Kado theorem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 103-112
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main aim of the paper is to prove the following result.
Theorem. Let $\Gamma$ be a $k$–quasiconformal circle, $L$ a Jordan curve (not necessarily quasiconformal). Suppose that $f$ maps $\operatorname{ext} L$ onto $\operatorname{ext} \Gamma$ quasiconformally and that $f(\infty)=\infty$, $f'(\infty)>0$. Suppose further that there is a horaeomorphism $\chi\colon L\to\Gamma$ such that
$$
|\chi(\zeta)-\zeta|\leqslant\varepsilon,\quad\zeta\in\Gamma,\quad0\varepsilon\leqslant1.
$$
Then there exist numbers $\alpha=\alpha(k)>0$ and $A=A(k)$ such that
$$
|f(\chi(\zeta))-\zeta|\leqslant A\varepsilon^\alpha,\quad\zeta\in\Gamma.
$$
            
            
            
          
        
      @article{ZNSL_1987_157_a8,
     author = {N. A. Shirokov},
     title = {She quantitative version of the {Kado} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a8/}
}
                      
                      
                    N. A. Shirokov. She quantitative version of the Kado theorem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 103-112. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a8/
