A characterization of 2-trivial Banach spaces with unconditional basis
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 76-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a Banach space with unconditional basis such that every operator from $X$ to $l^2$ is 2-absolutely summing. Then $X$ is isomorphic either to $c_0$ or to $l^1$ or to $c_0\oplus l^1$.
@article{ZNSL_1987_157_a6,
     author = {M. Rudelson},
     title = {A characterization of 2-trivial {Banach} spaces with unconditional basis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a6/}
}
TY  - JOUR
AU  - M. Rudelson
TI  - A characterization of 2-trivial Banach spaces with unconditional basis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 76
EP  - 87
VL  - 157
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a6/
LA  - ru
ID  - ZNSL_1987_157_a6
ER  - 
%0 Journal Article
%A M. Rudelson
%T A characterization of 2-trivial Banach spaces with unconditional basis
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 76-87
%V 157
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a6/
%G ru
%F ZNSL_1987_157_a6
M. Rudelson. A characterization of 2-trivial Banach spaces with unconditional basis. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 76-87. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a6/