A characterization of 2-trivial Banach spaces with unconditional basis
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 76-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a Banach space with unconditional basis such that every operator from $X$ to $l^2$ is 2-absolutely summing. Then $X$ is isomorphic either to $c_0$ or to $l^1$ or to $c_0\oplus l^1$.
@article{ZNSL_1987_157_a6,
author = {M. Rudelson},
title = {A characterization of 2-trivial {Banach} spaces with unconditional basis},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--87},
publisher = {mathdoc},
volume = {157},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a6/}
}
M. Rudelson. A characterization of 2-trivial Banach spaces with unconditional basis. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 76-87. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a6/