Rational approximation in $L^p$ and Faber transforms
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 70-75
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the technique of Faber transforms we show that Pekarskii's theorem on rational approximation of functions in $H^p$, $1
, directly implies Petrushev's theorem on rational approximation in $L^p[-1,1]$, $1 , and vice versa. The same technique permits us to obtain similar results for functions analytic in domains with Lipschitz Jordan boundaries.
@article{ZNSL_1987_157_a5,
author = {V. V. Peller},
title = {Rational approximation in~$L^p$ and {Faber} transforms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--75},
year = {1987},
volume = {157},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a5/}
}
V. V. Peller. Rational approximation in $L^p$ and Faber transforms. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 70-75. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a5/