Rational approximation in $L^p$ and Faber transforms
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 70-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the technique of Faber transforms we show that Pekarskii's theorem on rational approximation of functions in $H^p$, $1, directly implies Petrushev's theorem on rational approximation in $L^p[-1,1]$, $1, and vice versa. The same technique permits us to obtain similar results for functions analytic in domains with Lipschitz Jordan boundaries.
@article{ZNSL_1987_157_a5,
     author = {V. V. Peller},
     title = {Rational approximation in~$L^p$ and {Faber} transforms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--75},
     year = {1987},
     volume = {157},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a5/}
}
TY  - JOUR
AU  - V. V. Peller
TI  - Rational approximation in $L^p$ and Faber transforms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 70
EP  - 75
VL  - 157
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a5/
LA  - ru
ID  - ZNSL_1987_157_a5
ER  - 
%0 Journal Article
%A V. V. Peller
%T Rational approximation in $L^p$ and Faber transforms
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 70-75
%V 157
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a5/
%G ru
%F ZNSL_1987_157_a5
V. V. Peller. Rational approximation in $L^p$ and Faber transforms. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 70-75. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a5/