On the boundary values of analytic operator-valued functions with positive imaginary parts
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 55-69

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak Y_p$ $(0$ be the Schatten-von-Heumann class of operators on a Hilbert space. We prove that for $\mathfrak Y_p$-valued $(0$ $\mathbb R$-functions the nontangential limits exist a. e. on $\mathbb R$ and belong to $\mathfrak Y_p$. For $p>1$ the “boundary values” can even be unbounded everywhere on $\mathbb R$. Finally, for $p=1$ the nontangential limits on $\mathfrak Y_q$, exist in the norm of $q>1$. However, they belong, in general, only to the symmetric ideal $\mathfrak Y_\Omega$, which is adjoint to Matsaev's class.
@article{ZNSL_1987_157_a4,
     author = {S. N. Naboko},
     title = {On the boundary values of analytic operator-valued functions with positive imaginary parts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a4/}
}
TY  - JOUR
AU  - S. N. Naboko
TI  - On the boundary values of analytic operator-valued functions with positive imaginary parts
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 55
EP  - 69
VL  - 157
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a4/
LA  - ru
ID  - ZNSL_1987_157_a4
ER  - 
%0 Journal Article
%A S. N. Naboko
%T On the boundary values of analytic operator-valued functions with positive imaginary parts
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 55-69
%V 157
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a4/
%G ru
%F ZNSL_1987_157_a4
S. N. Naboko. On the boundary values of analytic operator-valued functions with positive imaginary parts. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 55-69. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a4/