On the boundary values of analytic operator-valued functions with positive imaginary parts
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 55-69
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak Y_p$ $(0$ be the Schatten-von-Heumann class of operators on a Hilbert space. We prove that for $\mathfrak Y_p$-valued $(0$ $\mathbb R$-functions the nontangential limits exist a. e. on $\mathbb R$ and belong to $\mathfrak Y_p$. For $p>1$ the “boundary values” can even be unbounded everywhere on $\mathbb R$. Finally, for $p=1$ the nontangential limits on $\mathfrak Y_q$, exist in the norm of $q>1$. However, they belong, in general, only to the symmetric ideal $\mathfrak Y_\Omega$, which is adjoint to Matsaev's class.
@article{ZNSL_1987_157_a4,
author = {S. N. Naboko},
title = {On the boundary values of analytic operator-valued functions with positive imaginary parts},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--69},
publisher = {mathdoc},
volume = {157},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a4/}
}
S. N. Naboko. On the boundary values of analytic operator-valued functions with positive imaginary parts. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 55-69. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a4/