On peak sets for H\"older classes (a~counterexample to E.~M.~Dyn'kin's conjecture)
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 45-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a peak set $E\subset\mathbb T$ for the analytic Hölder class $A_\alpha$ ($0\alpha1$) such that $\operatorname{dist}(\cdot,E)^{-\alpha}\notin L^1(\mathbb T)$.
@article{ZNSL_1987_157_a3,
     author = {B. J\"oricke},
     title = {On peak sets for {H\"older} classes (a~counterexample to {E.~M.~Dyn'kin's} conjecture)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/}
}
TY  - JOUR
AU  - B. Jöricke
TI  - On peak sets for H\"older classes (a~counterexample to E.~M.~Dyn'kin's conjecture)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 45
EP  - 54
VL  - 157
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/
LA  - ru
ID  - ZNSL_1987_157_a3
ER  - 
%0 Journal Article
%A B. Jöricke
%T On peak sets for H\"older classes (a~counterexample to E.~M.~Dyn'kin's conjecture)
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 45-54
%V 157
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/
%G ru
%F ZNSL_1987_157_a3
B. Jöricke. On peak sets for H\"older classes (a~counterexample to E.~M.~Dyn'kin's conjecture). Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 45-54. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/