On peak sets for Hölder classes (a counterexample to E. M. Dyn'kin's conjecture)
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 45-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a peak set $E\subset\mathbb T$ for the analytic Hölder class $A_\alpha$ ($0<\alpha<1$) such that $\operatorname{dist}(\cdot,E)^{-\alpha}\notin L^1(\mathbb T)$.
@article{ZNSL_1987_157_a3,
     author = {B. J\"oricke},
     title = {On peak sets for {H\"older} classes (a~counterexample to {E.~M.~Dyn'kin's} conjecture)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--54},
     year = {1987},
     volume = {157},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/}
}
TY  - JOUR
AU  - B. Jöricke
TI  - On peak sets for Hölder classes (a counterexample to E. M. Dyn'kin's conjecture)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 45
EP  - 54
VL  - 157
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/
LA  - ru
ID  - ZNSL_1987_157_a3
ER  - 
%0 Journal Article
%A B. Jöricke
%T On peak sets for Hölder classes (a counterexample to E. M. Dyn'kin's conjecture)
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 45-54
%V 157
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/
%G ru
%F ZNSL_1987_157_a3
B. Jöricke. On peak sets for Hölder classes (a counterexample to E. M. Dyn'kin's conjecture). Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 45-54. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/