On peak sets for H\"older classes (a~counterexample to E.~M.~Dyn'kin's conjecture)
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 45-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a peak set $E\subset\mathbb T$ for the analytic Hölder class $A_\alpha$ ($0\alpha1$) such that $\operatorname{dist}(\cdot,E)^{-\alpha}\notin L^1(\mathbb T)$.
@article{ZNSL_1987_157_a3,
author = {B. J\"oricke},
title = {On peak sets for {H\"older} classes (a~counterexample to {E.~M.~Dyn'kin's} conjecture)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--54},
publisher = {mathdoc},
volume = {157},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/}
}
B. Jöricke. On peak sets for H\"older classes (a~counterexample to E.~M.~Dyn'kin's conjecture). Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 45-54. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a3/