On singular parts of contractive analytic operator-functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 30-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the class $B_G$ of holomorphic functions in $G\in\mathbb C$ whose values are contractions on a separable Hilbert space. For $T(\cdot)\in B_G$ we prove that if $T(z_0)$ (for some $z_0\in G$) is a weak contraction, its singular part $T^{(s)}(z_0)$ is complete, and the difference $T(z)-T(z_0)$ is not too big (say, finite dimensional) then $T^{(s)}(z_0)$ is complete almost everywhere in $G$. If, in addition, $T(z_0)$ is a completely nonunitary contraction satisfying some smoothness conditions then the spectrum $\sigma_z$ of $T^{(s)}(z_0)$ $(z\in G)$ is a thin set (in nontrivial case):
$$
\int_{\mathbb T}\log\{\inf_{\zeta\in\sigma_z}|t-\zeta|\}\,|dt|>-\infty.
$$
The proofs of the results stated are based on a formula obtained in the paper which relates the characteristic functions of the contractions $T(z)$ for different $z$ in $G$.
			
            
            
            
          
        
      @article{ZNSL_1987_157_a2,
     author = {Yu. P. Ginzburg and A. A. Tarasenko},
     title = {On singular parts of contractive analytic operator-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a2/}
}
                      
                      
                    Yu. P. Ginzburg; A. A. Tarasenko. On singular parts of contractive analytic operator-functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 30-44. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a2/
